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Abstract:  The purpose of this paper is to illuminate the distinguished role of the Mittag-Leffler 

function and its generalizations in fractional analysis and fractional Stochastic models. The content 

of the paper is history, properties and applications  of Mittag-Leffler function connected to the SIR 

model. 

Keywords: Mittag-Leffler function; fractional integrals and derivatives; fractional 

equations; fractional Stochastic models, continuous-time random walk (CTRW),SIR models 

etc. 

Introduction: 

In the paper, we would like to highlight the distinguished role of the Mittag-Leffler function 

and its numerous generalizations in fractional calculus and fractional modeling. Partly, the 

material of the paper is based on the results from the recent monograph 

 

    𝐸𝛼(Z) = ∑
𝑍𝑛

Γ(𝛼𝑛+1)
∞
𝑛=0   ,     Re (𝛼)  >  0                                                                                   (1) 

The  Mittag-Leffler  function  has  been  introduced  to  give  an  answer  to  a  classical  

question   of complex analysis, namely to describe  the  procedure  of  the  analytic  continuation  

of  power  series  outside  the  disc  of  their  convergence.  Much later,   theoretical applications 

to the study of integral equations, as well as more practical applications to the modeling of ‘non-

standard’ processes have been found. The importance of the Mittag-Leffler function was re-

discovered when its connection to fractional calculus was fully understood. Different aspects of 

the distinguished role of this function in fractional theory and its applications have been described 

in several monographs and surveys on fractional calculus and Fractional Modeling.  

The paper is organized as follows. In Section 2, we briefly describe the history of the Mittag-

Leffler function, paying attention mostly to the first period of the development of its theory. 

Section 3 is devoted to the presentation of the properties of the Mittag-Leffler function and its 

direct generalizations. Theoretical applications of the Mittag-Leffler function are briefly 
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described in Section 4.  Mostly, we deal here with applications to the study of integral and 

differential equations   of fractional order. Lastly, Section 5 is devoted to the description of a 

number of Stochastic models in physics, mechanics, chemistry and biology in which the Mittag-

Leffler function plays a crucial role. We also mention there the applications of the Mittag-Leffler 

function in probability theory.We have to point out that it is practically impossible to touch on all 

of the aspects of the theory of the Mittag-Leffler function and its generalizations, as well as their 

applications. The list of references is also incomplete. The interested reader can find more 

information in the monographs and surveys mentioned above (see also the  references there in). 

The most extended source for such information is the recent monograph. 

 

1. History of the Mittag-LefflerFunction: 

 At the end of the 19th century, Gösta Magnus Mittag-Leffler started to work on the problem 

of the analytic continuation of monogenic functions of one complex variable. This classical 

question attracted the attention of the great mathematicians of that time. Inparticular, to solve the 

above problem, the construction related to the so-called Laplace–Abel integral was proposed: 

∫ 𝑒−𝜔∞

0
𝐹(𝜔𝑧)𝑑𝜔                                                                                                                    (2) 

 

𝑤ℎ𝑒𝑟𝑒 F(z) = ∑
𝑛𝜗

𝜗!

∞
𝜗=0 𝑧𝜗 ,          lim

𝜗→∞
𝑆𝑢𝑝 √|𝑛𝜗|𝜗

  =
1

𝑟
 

 

On the basis of his first results in the area, Mittag-Leffler made three reports in 1898 at the 

Royal Swedish Academy of Sciences in Stockholm. In particular, he proposed using the following 

generalization of the Laplace–Abel integral: 

∫ 𝑒−𝜔∞

0
𝐸𝛼(𝜔∝𝑧)𝑑𝜔                                                                                                                    (3) 

 

with 𝐸𝛼  defined by Equation (1). The properties of the latter were studied by him in a series of five 

notes published in 1901–1905 .Nowadays, the function 𝐸𝛼 is known as the Mittag-Leffler function. 

Practically at the same time, several other functions related to the problem studied by Mittag-Leffler 

were introduced. 

 Among them are the functions introduced by Le Roy: 

                   ∑
𝑍𝑘

(𝑘!)𝑝
∞
𝑘=0   ,     p  >  0                                                                                            (4) 

byLindelöf: 

                   ∑
𝑍𝑘

𝑛∝𝑘
∞
𝑘=0   ,       0 <∝<  1                                                                                       (5) 

 

                  ∑ (
𝑧

log(𝑘+ 
1

∝
)
)𝑘∞

𝑘=0   ,     0 <∝<  1                                                                              (6)    

and byMalmquist:                                         

                ∑
𝑍𝑘−2

Γ(1+ 
𝑘

(𝑙𝑜𝑔𝑛)∝)

∞
𝑛=0   ,      0< ∝ <  1                                                                             (7) 
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The direct generalization of the Mittag-Leffler function into two parameters  was proposed by 

Wiman in his work on zeros of function Equation (1): 

            𝐸∝ ,𝛽(𝑧) =∑
𝑍𝑘

Γ(∝𝑘+𝛽 )

∞
𝑘=0   ,      Re (𝛼)  >  0,    𝛽 ∈   ℂ                                                      (8) 

           Later, this function was rediscovered and intensively studied byAgarval and Humbert. With 

β = 1, this function coincides with the classical Mittag-Leffler function, Eα,1(z)=Eα(z). The most 

popular and widely-applicable functions from the above-mentioned collection are the Mittag-Leffler 

function of one parameter equation and the Mittag-Leffler function of two parameter equation. The 

two-parameter function of the Mittag-Leffler type, which plays very important role  in the fractional 

calculus, was first introduced by Agarwal. A number of relationships for this function were 

obtained by Humbert and Agarwal using Laplace transform technique. In the year 1930, Hille and 

Tamarkin have obtain a solution of the Abel-Voltera type equation in terms of Mittag-Leffler 

function. Furthermore, the various properties, generalization and applications of Mittag-Leffler 

function are studied by many researchers and Mathematician such as M.M. Dzhrbashyan ,Blair 

(1974), Bagley and Torvik (1984), Kilbas and Saigo (1995),Gorenflo et al. (1997), Gorenflo, 

Luchko and Rogosin (1997), Kilbas, Saigo and Saxena (2004), Saxena and Kalla(2008) etc. and 

contributed. In this connection, we prove some relations of Mittag-Leffler functions of one and two 

parameters. 

 

2. Properties of Mittag-Leffler Functions to other Functions: 

1) E0(z) =  
1

1−𝑧
  , |𝑧| < 1. 

2) E1(z)  = 𝑒𝑧 

3) E2(z)  = cosh (√𝑧)             z ∈ C 

4) E1 , 1 (z)  = 𝑒𝑧 

5) E1 , 2(z)  = 
𝑒𝑧−1

𝑧
− 

6) E2 , 1(z)  = cosh (√𝑧)             z ∈ C 

7) E2 , 2(z)  = 
Sin h (√𝑧)

 (√𝑧)
 

8) 𝐸1

2
 ,1

(z)  =𝑒𝑧2
 er fc(-z)     where, er fc(-z) is  the complimentary error function 

The next period in the development of the theory of the Mittag-Leffler function is connected 

with increasing the number of parameters. Thus, the three-parametric Mittag-Leffler-type 

function was introduced by Prabhakar. 

𝐸𝛼 ,𝛽
𝛾

(z) ≔ ∑
(𝛾)𝑘𝑧𝑘

k! Γ(𝛼𝑘+𝛽)

∞
𝑘=0   ,     Re (𝛼)  >  0,   Re (𝛽)  >  0,   𝛾 > 0                                       (9) 

Where (γ)n= γ(γ + 1) . . . (γ + n − 1). For γ = 1, this function coincides with two-parametric 

Mittag-Leffler function Equation (8), and with β = γ = 1, it coincides with the classical Mittag-

Leffler function Equation (1), i.e., Eα,β,1= Eα,β, Eα,1,1= Eα. 

Later, in relation to the solution of a certain type of fractional differential equations, Kilbas 

and Saigo introduced  another kind of three-parametric Mittag-Leffler-type function: 

 

       𝐸∝,𝑚,𝑙(𝑧) =∑ 𝑐𝑘𝑧𝑘∞
𝑘=0   ,      Re (𝛼)  >  0,  m> 0, 𝑙 ∈   ℂ                                                     (10) 
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   With   ∝, 𝑚, 𝑙 are Parameters, for m=1 this function is reduced to two parametric function. 

Equations (9) and (10)) are essentially used as an explicit representation of solutions to integral and 

differential equations of the fractional order. 

The properties that we discuss here are the following: 

   The order 𝜌 of an entire function                      f(z)=∑ 𝑐𝑛𝑧𝑛∞
𝑛=0   , 

 

                                                                   𝜌 = lim
𝑛→∞

𝑆𝑢𝑝
𝑛 𝑙𝑜𝑔𝑛

log
1

|𝑐𝑘|

 

  The order 𝜎 of an entire function               f(z) = ∑ 𝑐𝑛𝑧𝑛∞
𝑛=0 of the order 𝜌; 

 

                                                                    (𝜌𝑒𝜎)
1

𝜌 = lim
𝑛→∞

𝑆𝑢𝑝(𝑛
1

𝜌 √|𝑐𝑘|𝑛
) 

 

The Laplace transform of a function             f(t) = L{f(t)} = ∅(s) = ∫ 𝑒−𝑠𝑡∞

0
 𝑓(𝑡)𝑑𝑡 

 

 

The Fractional Integral of a function          f(x)   = 𝐽0
𝛼 f(x) =  

1

Γ(α)
∫

𝑓(𝑡)

(𝑥−𝑡)1− 𝛼

𝑥

0
𝑑𝑡,  x> 0 

 

 

The Fractional Derivative of a function      f(x)   = 𝐷0
𝛼 f(x) =  

1

Γ(m− α)

𝑑𝑚

𝑑𝑥𝑚 ∫
𝑓(𝑡)

(𝑥−𝑡)1−𝑚+  𝛼

𝑥

0
𝑑𝑡 ,  x> 0 

 

                                                                             m – 1 < ∝<m 

 

      Properties of the functions 𝐸𝛼(Z),  𝐸∝ ,𝛽(𝑧),  𝐸𝛼 ,𝛽
𝛾

(z)  and 𝐸∝,𝑚,𝑙(𝑧) are also discussed. 

Several other analytic properties are discussed, in particular different types of recurrence 

relations, integral and differential properties. The study of zeros’ distribution is presented there, 

too. These results are helpful for the investigation of certain inverse scattering problems, as well 

as other problems from the operator theory. For calculation of the Mittag-Leffler function, one 

can use.  Asymptotic properties of the Mittag-Leffler-type functions show their place in the whole 

theory of special functions. Complete monotonicity of the Mittag-Leffler function is applied to 

the study of the Lévy stable distributions; relations to different kinds integral transforms are used 

as the solution to integral and differential equations. 

3. Applications to Fractional Order Equations: 

We obtained the solutions of various fractional order differential equations and these are 

represented graphically by using Mathematica. The Abel integral equations occur in many 

situations where physical measurements are to be evaluated. In many of these cases, the 

independent variable is the radius of a circle or a sphere, and only after a change of variables, the 

integral operator has the form Iα,usually with α=1/2 and the equation is of the first kind.  For 

instance, there are applications in the evaluation of spectroscopic measurements of cylindrical gas 
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discharges, the study of the solar or a planetary atmosphere, the investigation of star densities in a 

globular cluster, the inversion of travel times of seismic waves for the determination of terrestrial 

sub-surface structure and in the solution of problems in spherical stereology. Descriptions and 

analysis of several problems of this kind can be found in the books by Gorenflo andVessella. 

Examples of initial value problem are easily solved by using laplace transform and Inverse laplace 

transform. One of the first investigations of differential equations of fractional order was made by 

Barrett. He considered differential equations with the fractional derivative of the Riemann–

Liouville-type of arbitrary order α, Re α >0, where n boundary conditions (n = Re 𝛼 + 1) in the 

form of the values at the initial point of the fractional derivatives of order   𝛼 − 𝑘, k =1,2,...,n are 

posed. It was shown that in a suitable class of functions, the solution is unique and is represented 

using the Mittag-Leffler function. 

 One of the leading methods for linear fractional ordinary differential equations is their 

(equivalent) reduction to certain Volterra integral equations in proper functional spaces. An 

extended technique based on this method in the application to different kinds of fractional 

differential equations is presented. Other methods proposed for explicitly solving ordinary 

fractional differential equations and discussed are the compositional method, the operational 

method and the integral transforms method. 

It was noted, in particular, that different types of fractional derivatives involved in the 

equationslead to different kinds of initial conditions, e.g., if a differential equation contains the 

Riemann–Liouville fractional derivative,  then  the  natural  initial  conditions  are  so-called  

Cauchy-type  conditions,  i.e., conditions of the type, but in the case of the Caputo derivatives, it 

is natural to pose the standard Cauchy conditions. 

                                                                        𝐷𝑎+
𝛽𝑛( a+) = 𝑏𝑛 

It was probably Dzherbashian who first considered the Dirichlet-type problems for the integro-

differential equations of fractional order. Classification of linear and non-linear  partial  

differential  equations  of  fractional  order  is  still far from being completed.   Several results for 

partial differential equations are described. Among these results, we mention the pioneering work 

by Gerasimov  and recent books. Anyway, this area is rapidly growing, since most of the results 

are related to different types of applications. It is impossible to describe all existing results. Partly, 

they are presented in. We also note that many authors have applied methods of fractional integro-

differentiation to construct solutions to ordinary and partial differential equations, to investigate 

integro-differential equations and to obtaina unified theory of special functions. 

 

5. Mittag-Leffler Functions in Stochastic models: 

Stochastic modeling, which uses the fractional calculus approach, as well as the machinery of the 

Mittag-Leffler functions, is connected mainly with the concept of the continuous time random walk  

(CTRW). CTRW was introduced by Montroll and Weiss as a generalization of physical diffusion 

process to effectively describe anomalous diffusion, i.e. the super- and sub-diffusive cases. An 

equivalent formulation of the CTRW is given by generalized master equations. A connection 

between CTRWs and diffusion equations with fractional time derivatives has been 

http://www.ijmra.us/
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established. Similarly, time-space fractional diffusion equations can be considered as CTRWs with 

continuously distributed jumps or continuum approximations of CTRWs on lattices. 

 

         A fractional generalization of the Poisson probability distribution was presented by Pillai in 

his pioneering work. He introduced the probability distribution (which he called the Mittag-Leffler 

distribution) using the complete monotonicity of the Mittag-Leffler function. The concept of a 

geometrically infinitely-divisible distribution was introduced by Klebanov, Maniya and Melamed. 

Later, , Pillai introduced a discrete analogue of such a distribution (i.e., the discrete Mittag-Leffler 

distribution). Another possible variant of the generalizations of the Poisson distribution isthat 

introduced by Lamperti 

 

        The use of the CTRW as a stochastic process from which once could derive physically 

consistent fractional-order ODEs and fractional-order PDEs was relianton the introduction of 

power-law tailed waiting time densities such as the Mittag-Leffler density. The use of exponential 

waiting time densities results in integer order derivatives. The key difference between the 

exponential and Mittag-Leffler distributions isthat the former is memoryless. For the exponential 

distribution the `waiting time' until the next jump is not dependent on how much time has already 

elapsed. Inthe case of the Mittag-Leffler distribution the longer that one has waited, the longerone 

expects to wait. This memory property, the memory of how much time one has already waited, 

becomes manifest through a fractional derivative in the governing evolution equation. The 

fractional derivative, like an integral, requires the knowledge of the full history of the solution, but 

unlike an integral it expresses the time rate of change of this full history, and it applies different 

weighting to different parts of the history. 

    we derive the governing master equations of an SIR model from a stochastic process with general 

history-dependent infectivity and recovery. 

 

We incorporate fractional derivatives into both the infective and recovery terms by choosing 

𝜑(t) to be power-law distributed and 𝜌(t) related to our choice of 𝜑(t). In particular, we take 𝜑(t) to 

be Mittag–Leffler distributed 

                                                       𝜑(t) = 
𝑡𝛼−1

𝜏𝛼 𝐸𝛼 ,𝛼(−{ 
𝑡

𝜏 
}𝛼) 

 

for 0 <𝛼 < 1, where 𝜏is a scaling parameter. This distribution has a power-law tail, such that 

𝜑t) ~𝑡−𝛼−1for large values of t. Here, 𝐸𝛼 ,𝛽(𝑧) is the two-parameter Mittag–Leffler function, given 

by 

                                           𝐸∝ ,𝛽(𝑧) =∑
𝑍𝑘

Γ(∝𝑘+𝛽 )

∞
𝑘=0   ,      Re (𝛼)  >  0,  𝛽 ∈   ℂ 

 

The corresponding function ∅(𝑡)  is  

                                                        ∅(𝑡)  = 𝐸𝛼 ,1(−{ 
𝑡

𝜏
 }𝛼) 

    Using the relation between the Riemann–Liouville fractional derivative and its inverse Laplace 

Transform, we are able to express the first integral which yields the fractional-order 

infectivity and recovery SIR model. 
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we have derived a fractional-order infectivity and recovery model using a stochastic process. The 

fractional derivatives arise as a consequence of taking an age of infection-dependent infectivity and 

recovery to be power-law-distributed. In doing so, we have shown how to incorporate fractional 

derivatives into the model without violating the physicality of the parameters of the model. Under 

appropriate limits, we are able to simplify this generalised fractional model to the fractional 

recovery and classic SIR models. 
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